Exercise 42

Find the derivative. Simplify where possible.

$$
y=x \tanh ^{-1} x+\ln \sqrt{1-x^{2}}
$$

Solution

Take the derivative using the chain and product rules.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(x \tanh ^{-1} x+\ln \sqrt{1-x^{2}}\right) \\
& =\frac{d}{d x}\left(x \tanh ^{-1} x\right)+\frac{d}{d x}\left(\ln \sqrt{1-x^{2}}\right) \\
& =\left[\frac{d}{d x}(x)\right] \tanh ^{-1} x+x\left[\frac{d}{d x}\left(\tanh ^{-1} x\right)\right]+\frac{1}{\sqrt{1-x^{2}}} \cdot \frac{d}{d x}\left(\sqrt{1-x^{2}}\right) \\
& =(1) \tanh ^{-1} x+x\left(\frac{1}{1-x^{2}}\right)+\frac{1}{\sqrt{1-x^{2}}} \cdot \frac{1}{2}\left(1-x^{2}\right)^{-1 / 2} \cdot \frac{d}{d x}\left(1-x^{2}\right) \\
& =\tanh ^{-1} x+\frac{x}{1-x^{2}}+\frac{1}{\sqrt{1-x^{2}}} \cdot \frac{1}{2}\left(1-x^{2}\right)^{-1 / 2} \cdot(-2 x) \\
& =\tanh ^{-1} x+\frac{x}{1-x^{2}}+\frac{1}{\sqrt{1-x^{2}}} \cdot \frac{-x}{\sqrt{1-x^{2}}} \\
& =\tanh ^{-1} x+\frac{x}{1-x^{2}}-\frac{x}{1-x^{2}} \\
& =\tanh ^{-1} x
\end{aligned}
$$

